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Ef� cient Aerodynamic Design Method
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An ef� cient aerodynamic design optimization method for the compressible Euler equations is presented. A
gradient-based optimization method is used to � nd the optimal design, in conjunction with a continuous adjoint
sensitivity analysis method. To improve the ef� ciency of the design method, a tightly coupled algorithm based on a
step-size estimation is proposed. The ef� ciency of the present method is demonstrated through drag minimizations
of a wing and an airfoil. The result shows that the cost of the present method is signi� cantly lower than that of the
loosely coupled algorithm.

Nomenclature
Ci = � ux Jacobian matrix in the computationaldomain
d = design variables vector
Fi = � ux vector in the computationaldomain
fi = � ux vector in the physical domain
GG = gradient vector of the object function
I = object function
q = conservative � ow variables vector
R = residual vector in the computational domain
S = searching direction
² = step size along the searching direction S
Ã = Lagrangian multiplier vector

Subscript

face = value at cell face

Superscript

T = transpose of vector or matrix

Introduction

A ERODYNAMIC design optimization (ADO) has been an im-
portant research area for the past decade.1¡5 It providesan au-

tomated design procedure with the help of numerical optimization
and computational � uid dynamics (CFD). In ADO, CFD replaces
the wind-tunnel test of a model geometry, and numerical optimiza-
tion indicates how the model should be changed to improve the
aerodynamicperformance.By virtue of ADO, the turn around time
and cost of design can be substantially reduced.6 In spite of these
advantages, ADO has not been widely used for practical design
problems due to a huge amount of computing time.4;7

Early work on ADO was limited by the number of design vari-
ables. The � nite differencemethod was used to � nd the design sen-
sitivity; hence, � ow solutions should be recalculated in proportion
to the number of design variables.1 An alternative of the � nite dif-
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ference method is the adjoint method, which has been introduced
by Jameson8 and Pironneau9 to � uid dynamics problems. In the ad-
jointmethod, the sensitivitycanbe found from the solutionof partial
differential equations, namely, adjoint equations, regardless of the
number of design variables. Thus, the computing time of sensitiv-
ity analysis can be signi� cantly reduced. The adjoint method has
been successfully applied for several three-dimensional problems,
including the design optimization of a full aircraft.4;7;10

Even with the adjointmethod, the computing time of design opti-
mization is still in the order of a hundred times of � ow analysis.11;12

A reason for this large cost is mainly due to the coupling level of
optimization and � ow analysis. In a conventional aerodynamic de-
sign optimization algorithm, the � ow, sensitivity andoptimization
are independently solved in a row.13 Hereinafter, this method will
be referred as a loosely coupled algorithm. The cost of a loosely
coupled algorithmcan be estimated as follows. To � nd the sensitiv-
ity of the design problem, the � ow and adjoint equations are fully
recalculated at every design iteration. After sensitivity analysis, a
new design can be found through a one-dimensional line search.
Because the aerodynamic design optimization problem is a nonlin-
ear one, an iterative process or quadratic interpolation is used for
the line search. Consequently, it requires more than three solutions
of � ow equations. When it is assumed that the cost of the adjoint
equations is the same as that of the � ow equations, the cost of one
design cycle can be estimated as, at least, � ve times the � ow analy-
sis. If the optimum design can be found in 10 design iterations, the
total cost of design optimization can be estimated to be as much as
50 � ow analyses.

Efforts have been made to improve the ef� ciency of a loosely
coupled algorithm.14¡17 Most of these works are based on the idea
that the coupling level of the design optimizationcan be very essen-
tial to computing cost. These methods will be referred as a tightly
coupled algorithm. Ta’asan et al. suggested the one-shot method,
which uses a multigrid method for solving � ow and adjoint equa-
tions and the optimization problem simultaneously.15 The pseudo-
time method of Iollo et al. shares the same idea with the one-shot
method,althoughit used a pseudo-time-marchingmethodfordesign
optimization.16 Feng and Pulliam suggested an all-at-once method
by using the reduced Hessian sequential quadratic programming
method.17 These efforts showed the cost of design optimizationcan
be reduced to less than 10 times the amount of computing time for
the � ow solution. However, these algorithms are only applied for
simple one-dimensionalnozzles or airfoil shape optimization.

The main purpose of this paper is to develop an ef� cient ADO
method that is fast enough for practical three-dimensionalapplica-
tions. We use a gradient-basedoptimization, an adjoint method for
sensitivity analysis, and a tightly coupled algorithm. The equations
for the design variables, namely, design equations,are derived from
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the optimalitycondition.The designvariablesareupdatedby a time-
marching method during the design optimization. The three sets of
equations, � ow, adjoint, and design equations, are simultaneously
solved by a design iteration cycle. One design iteration consists of
several time steppings for � ow and adjoint equations and one time
stepping of design equations. A multigrid diagonalized alternating
direction implicit (DADI) method18;19 is used for the time stepping
of both the � ow and the adjoint equations. The design equations
are solved by a simple explicit time stepping, and the step size is
determined by a simple estimation formula of Ta’asan et al.15 The
resultingdesignprocedureis similar to thatof the one-shotmethod15

except that the multigrid method is not applied for design variables.
The � ow and adjoint solutionsare not fully converged,but only sev-
eral multigrid cycles are used during design iterations.This strategy
can result in a substantial reductionof computing cost of design op-
timization.The three-dimensionalcompressibleEuler equationsare
used for � ow analysis, and the second-orderupwind total variation
diminishing (TVD) scheme is used for discretization.

To show the ef� ciency of the presented method, drag minimiza-
tion problems for an airfoil and three-dimensionalwing under tran-
sonic � ow conditions are presented.The ef� ciency of the proposed
design method is assessed by the cost ratio of design and � ow anal-
ysis and comparison with a cost of the loosely coupled algorithm.

Governing Equations
The three-dimensionalcompressibleEuler equationsin Cartesian

coordinates x1 , x2, and x3 can be written in the conservation form
as
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and ½ is the density, ui is the velocity component for the xi direc-
tion, and p, E , and H are pressure, total energy, and total enthalpy,
respectively. The repeated index represents the tensor summation
convention. The pressure is determined by the equation of state
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(3)

and the total enthalpy is

H D E C p=½ (4)

where ° D 1:4 for air and is the ratio of speci� c heats. For conve-
nience, the physical coordinates system will be transformed to the
computationalcoordinates »1, »2 , and »3 .

In the computational domain, the Euler equations yield
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and J is the transformation Jacobian.

Adjoint Equations
The cost function of aerodynamic design can be written as a

function of � ow variables and geometric properties:

I D I .q; d / (6)

where I is the cost function, q is the vector of � ow variables, and
d is a vector of design variables that de� nes the target geometry
of the optimization problem. Because the governing equations for

the � ow� eld can be incorporated in the optimization problem as
constraints,the designsensitivitycanbe derivedfrom the variational
method or the optimal control theory.

For the steady state, the � ow� eld governing equations R can be
expressed as

R.q; d / D 0 (7)

When the Lagrange multiplier Ã is introduced, the augmented cost
function or Lagrangian becomes

I D I C ÃT R (8)

and its � rst variation can be written as
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When the multiplier Ã satis� es the adjoint equation

@ I T

@q
C ÃT @R

@q
D 0 (10)

the � rst term in Eq. (9) vanishes, and the change in the cost function
± I can be obtained from ±d.

Adjoint Formulation for Euler Equations
Equation (10) differs in form according to the governing equa-

tions. In this section, the derivationof continuousadjoint equations
for the Euler equations is briefy described. The description of de-
tailed derivations may be found in the literature.3 The cost function
of present work is limited to the drag coef� cient, and the constraint
is the lift coef� cient. They can be expressed with pressures on the
body surface p and the shape of body h, which is a function of
design variables d.

With the transformation to the computational coordinates »1, »2,
and »3, the body surface can be transformed onto a simple region
in the computational domain. We assume that the wing surface is
transformed onto the »2 D 0 surface. Then, the cost function I can
be written as

I D
Z

BS

h.d /g. p/ d» j (11)

where BS is the domain of body surface and g.p/ is the lift or
drag coef� cients or a blended function of both. When the Lagrange
multiplier Ã is introduced, the variation of cost function ± I can be
calculated without the variation of pressure ±p. The full details of
the derivations may be found in Refs. 3 and 20.

By use of the continuous adjoint method, the adjoint equations
for the Euler equations derived from Eq. (5) can be written as

CT
i

@Ã

@»i
D 0 (12)

where

Ci D @Fi

@Q
(13)

Equation (12) is similar to the linearized form of the Euler equation
except that the � ux Jacobian matrix is transposed. Therefore, it
can be solved by the same numerical procedure as for the Euler
equations, if appropriate boundary conditions are imposed.

The boundary conditions for the adjoint equations at the body
surface are determined as follows3:
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where Ã2 , Ã3, and Ã4 are the second to fourth components of the
Lagrange multiplierÃ . Equation (14) eliminates the contributionof
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pressure variation ±p in the variation of cost function ± I . Finally,
the variation of cost function becomes
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where D is the computational domain. The variations of metric
±[.1=J /.@»i=@x j /] can be found by the � nite difference method
(FDM). Therefore, the gradient of costfunction GG is

GG D ± I=±d (16)

Numerical Method
Both the Euler equations and adjoint equations are discretized

using the cell-centered� nite volume method. The numerical � uxes
at the cell faces are calculated by Roe’s21 approximate Riemann
solver together with the second-order upwind TVD scheme (see
Ref. 22).

The semidiscreteformofEq. (5) can be obtainedvia � nitevolume
discretization.When integratedcellwise in the computational space
domain, the governing equations yield

d

dt
.SQ/i jk C Ri jk .Q/ D 0 (17)

where
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where Si j is thecell volumeandFi are the numerical� uxesat the cell
interfaces. The numerical � uxes of the second-order TVD scheme
are constructed as follows:

Fface D 1
2 [FL C FR ¡ .j QAj1Q ¡ L/face] (19)

where subscripts L and R indicate left and right states of each cell
face, the tilde is Roe’s average21 value, and L is the antidiffusive� ux
of the second-orderupwind TVD scheme.22 The van Leer limiter is
used for satisfyingTVD condition,andHarten’s entropy� x function
is introduced to prevent nonphysical solutions.

The discretizationprocedurefor theadjointequationsare straight-
forward because the two sets of equations are of the same form. Al-
though the adjoint equations are linear, an iterative method is used
for steady-state solution. Because the numerical � uxes for the ad-
joint equationsare very crucial for the accuracyof computeddesign
sensitivity,a consistent � ux functionderivedfrom the discreteEuler
equations is used.23

The steady-state solution is obtained via the DADI algorithm
and the multigrid method with a modi� ed sawtooth cycle.18;19 The
Riemann invariants are used for Euler equations at the far-� eld
boundary and the � ow tangency condition at the body surface. For
the adjoint equations,the Lagrangianmultipliers are kept zero at the
far-� eld boundary, and Eq. (14) is used at the body surface.

The solutionprocedureis parallelizedusingthedomaindecompo-
sitionmethodand message passing interfacelibrary.24 The resulting
parallel code is a single instruction multiple data type.

Design Algorithm
Shape Function and Grid Modi� cation

The wing geometry is described with the initial shape and its per-
turbations.The shape functions in aerodynamicdesign are the basis
of perturbation functions. Because the design result will be highly
in� uencedby the shape functions,onemust chooseproperfunctions
accordingto design goals. In this work, the Hicks–Henne function25

is used as the shape function. It has been used by many researchers
for airfoil and wing design problems.1;3 When the Hicks–Henne
function is used, the modi� ed section pro� le can be written as

y.x/ D y0.x/ C
X

di h i .x/ (20)

where y0 is the initial geometry, di are design variables, and h i are
Hicks–Henne functions, which are de� ned as

hi .x/ D [sin.¼ x t1 /]t2 (21)

where t1 locates the maximum of the bump and t2 determines the
width of the bump.

For the two-dimensional problem, 10 Hicks–Henne25 functions
are used. These design variables are only used to modify the upper
surface of airfoil. The lower surface is kept constant during the de-
sign optimization.For the three-dimensionalproblem, � ve sections
of the wing are selected for the basis section. At each basis section,
10 Hicks–Henne functionsare used for modifyingthe sectionshape.
The � rst � ve variables are applied on the upper surface and another
� ve on the lower surface. Other sections of the wing are linearly
interpolated from the neighboring basis sections.

After the surface is modi� ed, the grid system should be also
modi� ed according to the wing surface. Because the displacement
of surface is usually very small, a simple arc-length-based linear
interpolation is suf� cient for the grid modi� cation. The new grid
system xn C 1 is calculated as

xn C 1
i j k D x0

i jk C ci jk .xn C 1 ¡ x0/i1k (22)

where

ci jk D

P j ¡ 1
j D 1
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j D 1
jxi; j C 1;k ¡ xi j k j

(23)

and j ¢ j indicates the L2 norm.

Tightly Coupled Algorithm
The loosely coupled algorithms iteratively solve the � ow and

adjoint equations during the optimization. In these method, the op-
timization problem is fully separated from the � ow solution pro-
cedure, and several � ow calculations are required at every design
iteration including line search.13;15 As mentioned in the Introduc-
tion, this strategyresults in a substantialincreaseof computing time.

In this paper, a tightly coupled algorithm is proposed based on
the design equations. Two necessary conditions of the constraint
optimizationproblem are feasibility and optimality.26 The � ow� eld
governing equations can be feasibility conditions of aerodynamic
design optimization. They ensure that the � ow variables are satis-
fying physical laws. The optimality condition de� nes the gradient
of the cost function at the optimum.

One interesting viewpoint of the constraint optimization was in-
troduced by Iollo et al.,16 where the optimization procedure is re-
garded as a pseudo-time marching in the design space. If we use
a loosely coupled algorithm, the design optimization is only per-
formed in the feasible region of design space. However, the feasi-
bilityof thedesignpointduring iterationsis notnecessary,as far as it
can beguaranteedat theoptimum.This means that the � owsolutions
should not necessarilybe convergedduring the designoptimization.
An alternativecost-effectivealgorithmcan be constructed,by relax-
ing the feasibility condition during the design iterations.

Basically, a new tightly coupled algorithm is based on pseudo-
time marching of the design variables. By the use of the optimality
condition, the gradient of object function should be zero at opti-
mum. Therefore, the following optimality conditioncan be referred
as design equations:

GG .d / D 0 (24)

In a loosely coupled algorithm, Eq. (24) is solved by a nonlinear
optimizationmethod. During the optimization, the � ow and adjoint
equations are repeatedly solved to provide the value of object func-
tion and sensitivity.In presentmethod, a global design cycle is used
to simultaneously solve the � ow, adjoint, and design equations.

The design equations can be also solved by a time-marching
method. By the introductionof a pseudotime t¤ in the design space,
the design equations can be written as follows:

@d
@t¤

C GG D 0 (25)
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Then, the design variables at new time step n C 1 can be found by
an explicit method:

1d=1t¤ C GG n D 0 (26)

or

dn C 1 D dn ¡ 1t¤ GG (27)

where 1t¤ is a time step for the design equations. Note that the
discretizeddesign equations(27) are the same as that of the steepest
descent method.26

Now, we have three sets of equations, � ow, adjoint, and de-
sign equations. A global design cycle is constructed with the time-
marching procedures of the three sets of equations. If the design
should be feasible during the optimization, the � ow equations need
to be fully converged in a design cycle. Theoretically, it is possible
to construct the design cycle just with one time integration of � ow,
adjoint, and design equations. However, the three sets of equations
have different numerical characteristics; thus, it is not effective to
construct such a cycle. For the three-dimensional case, the present
design cycle consists of 20 multigrid cycles of � ow and adjoint
equations, and one time integration of design equations.

The present algorithm can be referred as a tightly coupled algo-
rithm in the sense that the � ow, adjoint, and design equations are
simultaneouslysolvedby a globaldesigncycle.The � ow and adjoint
equations are marching to steady state during the design iterations,
while the design variables are also updated in the same iterations.

On the other hand, the time step of the designequationsshouldbe
carefully chosen to maintain the stability of the global design cycle.
The stability analysis for the design equations can give the limits of
the time step 1t¤; however, it is not an easy task when the structure
of GG cannot be de� ned as an analytic form.

An alternative is to determine 1t¤ by using the analogy with the
unconstrained optimization procedure.15 For an unconstrained op-
timization problem, the new design variables are determined by the
searching direction S and the step size ² . With the steepest descent
method, the design variable at the n C 1th step will be updated as

dn C 1 D dn C ².S=jSj/ (28)

where the search direction S is de� ned as S D ¡GG . The step size ²
is expected to minimize jGG .d C n C 1/j. That is,

@GG.dn C 1/

@²
D

@ GG.dn C ²S/

@²
D 0 (29)

The Taylor expansion of Eq. (29) yields (see Ref. 15)

² D ¡ GG T rd GGS
ST .rd GG /T rd GGS

(30)

where rd GG is a Hessian matrix. The production of Hessian matrix
andsearchingdirectionrd GGS is calculatedfrom the � nitedifference
with the previous design point:

rd GGS D [GG .d C N²S/ ¡ GG.d/]=N² (31)

From Eqs. (28) and (30), 1t¤ can be written as

1t¤ D ²=jGG j (32)

Finally, the present design procedure can be summarized as
follows:

1) Apply multigrid cycles for � ow and adjoint equations.
2) Calculate grid sensitivity by � nite difference.
3) Evaluate GG , gradient of cost function, by the use of Eq. (16).
4) Calculate 1t¤ by Eq. (32).
5) Update design variables using Eq. (27).
6) Repeat steps 1–5 until GG D 0.

Numerical Results
The present design method is applied to drag minimization prob-

lems of a two-dimensional airfoil and a three-dimensionalwing.
The cost functionfor the aerodynamicdesignis a penaltyfunction

form to keep the lift coef� cient constant. The same cost function is
used by Anderson and Venkatakrishnan,27 which can be written as

I D 1
2
.CL ¡ CL0/2 C 10

2
C2

D (33)

where CL0 is the initial lift coef� cient.
Two convergence criteria for the design optimization are used:

One is that the L2 norm of the gradient vector is less than 10¡4

normalized by its initial value, and the other is the relative change
of cost function is less than 10¡4 .

Two-Dimensional Airfoil Optimizations
The � rst test case is a drag minimization of a Royal Aircraft

Establishment(RAE) 2822airfoil.The � ow conditionis Mach num-
ber 0.73 at an angle of attack of 2.79 deg. The test case has been
used in a previousstudy to validatedesignalgorithms.1;12 Under this
� ow condition, a strong shock wave appears on the upper surface
of the airfoil.

The optimizationsareperformedwith a looselycoupledalgorithm
using both the � nite difference and adjoint sensitivity methods, as
well as the proposed tightly coupledalgorithm.For the loosely cou-
pled algorithm, the Broyden–Fletcher–Goldfarb-Shanno method is
used to determine the searchingdirection, and the step size is deter-
mined by a one-dimensionalline search with a sequentialquadratic
interpolation. The computational grid system is O type with 129
grid points. For the loosely coupled algorithm, the solutions at the
previous design point are used as the initial solutions of subsequent
designs.

All three design methods are converged by the second conver-
gencecriterion,that is, the relativechangeof the cost functionis less
than 10¡4 . The loosely coupled algorithm with the � nite difference
sensitivity takes 9 design iterations,whereas that with adjoint sensi-
tivity is convergedafter 10 iterations.The tightly coupledalgorithm
converges after 30 design iterations.

Figure 1 shows the pressure contours around an airfoil before
and after the design by the tightly coupled algorithm. The strong
shock wave on the airfoil is removed by the design. The design
optimizationresultsare shownin Fig. 2. The liftanddragcoef� cients
of designed airfoils are also given in Table 1. The lift coef� cients
of the airfoils are identical, whereas a small difference can be seen
in the drag coef� cients. The surface pressure distributions are very
similar except at the leading edge. The result of the tightly coupled
method is slightly different from the other methods. However, all
threedesignoptimizationmethodsendupwith the shock-freeairfoil.
The designedairfoils are almost identical, as can be seen in Fig. 2b.

In the two-dimensional airfoil optimization problem, the design
results of the loosely and tightly coupled methods are essentially
the same. However, the computing costs for the design optimiza-
tions are much different. Table 2 shows the computing cost of the
design optimization algorithms. The costs are given by the relative
cost of a � ow analysis when the L2 norm of the density is less than
10¡6. The computingcost of the design optimizationcan be dramat-
ically reduced by using the tightly coupled algorithm. The relative

Table 1 Aerodynamics coef� cients
of design results

Design algorithm CL CD

Loosely coupled (FDM) 99.6 58.0
Loosely coupled (adjoint) 99.6 58.0
Tightly coupled (adjoint) 99.6 60.6

Table 2 Computing costs of design optimization algorithms

Design algorithm Number of iterations CPU, s Cost

Loosely coupled (FDM) 9 4130 193.9
Loosely coupled (adjoint) 10 1897 89.1
Tightly coupled (adjoint) 30 170 8.0
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RAE 2822

Designed airfoil

Fig. 1 Pressure contours around airfoil before and after design.

cost of the present tightly coupled algorithm is just eight times that
of a � ow analysis. The ef� ciencies of tightly and loosely coupled
algorithmsare different by a factor of 10, even with the adjoint sen-
sitivitymethod.Becausewe solve two sets of � eld equations,that is,
� ow and adjoint, the ideal cost ratio is expected to 2.0. The present
cost ratio is larger than the ideal value; nonetheless, it is very low
compared with the conventional loosely coupled algorithm.

Three-Dimensional Wing Optimization
The initial geometryfor the three-dimensionalwing optimization

is theONERA M6 wing, and the � owconditionis Mach number0.84
at an angle of attack of 3.06 deg. The object function of the design
optimization is the same as that of the two-dimensional case. The
computational grid system is O–H type with 129 £ 33 grid points.
A four-level modi� ed sawtooth cycle is used for the multigrid, and
initial solutions are accelerated by the mesh-sequencing method.
The Cray T3E parallel computer, at the supercomputing center in
the Republic of Korea, is used for numerical calculations, and the
test cases are conducted with 16 processors.

The design was stopped by the second condition of the conver-
gence criteria.The number of design iterations is 20, and total com-
puting time is 995 s for each processor. The number of multigrid
cycles for the � ow equations is 236, during the design iterations,
and that for the adjoint equations is 379.

Figure 3 shows comparison of pressure contours on the wing
surface between the initial and the designed wings. The strong ¸
shock on the upper surface of the wing is smeared by the design.
Figure 4 shows pressureplots on the selectedwing spans.The shock

a) Surface pressure distributions

b) RAE 2822 and designed airfoils

Fig. 2 Results of design optimization of various methods.

ONERA M6

Designed wing

Fig. 3 Pressure contours on the wing surface before and after design.
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20% span

44% span

65% span

80% span

Fig. 4 Comparisons of pressure distributions on selected wing sections.

Fig. 5 Geometries of the ONERA M6 and designed wing.

waves are smeared but not fully removed. One possible reason is
the shape function. In the present design, only � ve selected wing
sections are modi� ed by the design variables,and other parts of the
wing surface are interpolated from the selected sections. Thus, the
exibility of shape function is somewhat limited, and it can result in
the remaining shock waves.

Figure 5 shows the shape change of the wing by the design
optimization. The lower surface of the designed wing is simi-
lar to that of ONERA M6. The upper surface of the designed
wing is modi� ed to reduce the shock strength. The wing becomes
slender at the wing root, and it becomes thicker along the wing
span.

Figure 6 shows the history of the L2 norm of the gradient and
cost function, and Fig. 7 shows the histories of the lift and drag
coef� cients during design iterations. The wave drag is reduced by
20%, and the lift is maintained at 98% of initial value. Both the
L2 norm and the cost function decrease monotonically during the
design cycles, but � atten out later.

Fig. 6 Histories of the cost function and L2 norm of gradient during
design iterations.

The total cost of the design optimization is again compared
with that of � ow analysis alone. Because the computing time
of the � ow analysis signi� cantly varies according to the conver-
gence criterion, several criteria are chosen for comparison. The
cost ratio of design and � ow analysis is about 7.65 when the
convergence criterion of � ow analysis is 10¡6 and 12.6 for 10¡5.
Even with 10¡4 of the convergence criterion, the relative cost is
22.4.
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Fig. 7 Histories of the lift and drag coef� cient.

Conclusions
An ADO method based on a tightly coupled algorithm is pre-

sented. The present method uses the adjoint method for sensitivity
analysis, which is adequate for large-scale design problems. The
design equations are derived from the optimality condition, and
they are solved by a time-marching method, together with the � ow
and adjoint equations. The step size for the design equations is
determined by a simple relation without an expensive line search
algorithm.

Two and three-dimensionalinviscid drag minimizationproblems
are solved by using the present design algorithm. The present de-
sign algorithm successfully removes or smears the shock waves in
the � ow� eld, and it reduces a signi� cant amount of wave drag. In
terms of relative cost to the � ow analysis, the present design al-
gorithm takes 8.0 and 7.65 for two- and three-dimensional design
optimizationproblem, respectively.The substantial reduction in the
computing cost can be observed, compared with the conventional
loosely coupled algorithm. For two-dimensional test case, the cost
for the proposed tightly coupled algorithm is less than 10% of the
loosely coupled one.
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