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Efficient Aerodynamic Design Method
Using a Tightly Coupled Algorithm
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An efficient aerodynamic design optimization method for the compressible Euler equations is presented. A
gradient-based optimization method is used to find the optimal design, in conjunction with a continuous adjoint
sensitivity analysis method. To improve the efficiency of the design method, a tightly coupled algorithm based on a
step-size estimation is proposed. The efficiency of the present method is demonstrated through drag minimizations
of a wing and an airfoil. The result shows that the cost of the present method is significantly lower than that of the

loosely coupled algorithm.

Nomenclature
C; = flux Jacobian matrix in the computational domain
d = design variables vector
F; = flux vector in the computational domain
fi = flux vector in the physical domain
g = gradient vector of the object function
1 = object function
q = conservative flow variables vector
R = residual vector in the computational domain
S = searchingdirection
€ = step size along the searching direction S
¥ = Lagrangian multiplier vector
Subscript
face = valueatcellface
Superscript
T = transpose of vector or matrix

Introduction

ERODYNAMIC design optimization (ADO) has been an im-

portantresearch area for the past decade.' = It provides an au-
tomated design procedure with the help of numerical optimization
and computational fluid dynamics (CFD). In ADO, CFD replaces
the wind-tunnel test of a model geometry, and numerical optimiza-
tion indicates how the model should be changed to improve the
aerodynamic performance. By virtue of ADO, the turn around time
and cost of design can be substantially reduced.® In spite of these
advantages, ADO has not been widely used for practical design
problems due to a huge amount of computing time.*’

Early work on ADO was limited by the number of design vari-
ables. The finite difference method was used to find the design sen-
sitivity; hence, flow solutions should be recalculated in proportion
to the number of design variables.! An alternative of the finite dif-
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ference method is the adjoint method, which has been introduced
by Jameson® and Pironneau’ to fluid dynamics problems. In the ad-
jointmethod, the sensitivity can be found from the solution of partial
differential equations, namely, adjoint equations, regardless of the
number of design variables. Thus, the computing time of sensitiv-
ity analysis can be significantly reduced. The adjoint method has
been successfully applied for several three-dimensional problems,
including the design optimization of a full aircraft.*”-1°

Even with the adjointmethod, the computing time of design opti-
mization is still in the order of a hundred times of flow analysis.!!"!?
A reason for this large cost is mainly due to the coupling level of
optimization and flow analysis. In a conventional aerodynamic de-
sign optimization algorithm, the flow, sensitivity andoptimization
are independently solved in a row.!> Hereinafter, this method will
be referred as a loosely coupled algorithm. The cost of a loosely
coupled algorithm can be estimated as follows. To find the sensitiv-
ity of the design problem, the flow and adjoint equations are fully
recalculated at every design iteration. After sensitivity analysis, a
new design can be found through a one-dimensional line search.
Because the aerodynamic design optimization problem is a nonlin-
ear one, an iterative process or quadratic interpolation is used for
the line search. Consequently, it requires more than three solutions
of flow equations. When it is assumed that the cost of the adjoint
equations is the same as that of the flow equations, the cost of one
design cycle can be estimated as, at least, five times the flow analy-
sis. If the optimum design can be found in 10 design iterations, the
total cost of design optimization can be estimated to be as much as
50 flow analyses.

Efforts have been made to improve the efficiency of a loosely
coupled algorithm.!*~!7 Most of these works are based on the idea
that the couplinglevel of the design optimizationcan be very essen-
tial to computing cost. These methods will be referred as a tightly
coupled algorithm. Ta’asan et al. suggested the one-shot method,
which uses a multigrid method for solving flow and adjoint equa-
tions and the optimization problem simultaneously.> The pseudo-
time method of Iollo et al. shares the same idea with the one-shot
method, althoughit used a pseudo-time-marchingmethod fordesign
optimization!® Feng and Pulliam suggested an all-at-once method
by using the reduced Hessian sequential quadratic programming
method.!” These efforts showed the cost of design optimization can
be reduced to less than 10 times the amount of computing time for
the flow solution. However, these algorithms are only applied for
simple one-dimensional nozzles or airfoil shape optimization.

The main purpose of this paper is to develop an efficient ADO
method that is fast enough for practical three-dimensionalapplica-
tions. We use a gradient-based optimization, an adjoint method for
sensitivity analysis, and a tightly coupled algorithm. The equations
for the design variables, namely, design equations, are derived from
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the optimality condition. The design variables are updated by a time-
marching method during the design optimization. The three sets of
equations, flow, adjoint, and design equations, are simultaneously
solved by a design iteration cycle. One design iteration consists of
several time steppings for flow and adjoint equations and one time
stepping of design equations. A multigrid diagonalized alternating
direction implicit (DADI) method'®:!? is used for the time stepping
of both the flow and the adjoint equations. The design equations
are solved by a simple explicit time stepping, and the step size is
determined by a simple estimation formula of Ta’asan et al.!> The
resultingdesign procedureis similar to that of the one-shotmethod"
except that the multigrid method is not applied for design variables.
The flow and adjointsolutions are not fully converged,but only sev-
eral multigrid cycles are used during design iterations. This strategy
can resultin a substantialreduction of computing cost of design op-
timization. The three-dimensionalcompressibleEuler equationsare
used for flow analysis, and the second-orderupwind total variation
diminishing (TVD) scheme is used for discretization.

To show the efficiency of the presented method, drag minimiza-
tion problems for an airfoil and three-dimensional wing under tran-
sonic flow conditions are presented. The efficiency of the proposed
design method is assessed by the costratio of design and flow anal-
ysis and comparison with a cost of the loosely coupled algorithm.

Governing Equations
The three-dimensionalcompressible Euler equationsin Cartesian
coordinates x;, X,, and x3 can be written in the conservation form
as

dq  3fi
—+—=0 1
ot + ax; )
where
o PU;
puy puiuy + pd;
q=| puzx |, Jfi = puiuy + pdi )
pus puiuz + pdis
pE pu; H

and p is the density, u; is the velocity component for the x; direc-
tion, and p, E, and H are pressure, total energy, and total enthalpy,
respectively. The repeated index represents the tensor summation
convention. The pressure is determined by the equation of state

p=@—Dp(E —juu) 3)
and the total enthalpy is
H=E+p/p “)

where y = 1.4 for air and is the ratio of specific heats. For conve-
nience, the physical coordinates system will be transformed to the
computational coordinates &, &, and &;.

In the computational domain, the Euler equations yield

0Q OF;
— +—=0 5
ot 0&; )
where
0= 1 F = 1 (0§
A VAR

and J is the transformation Jacobian.

Adjoint Equations

The cost function of aerodynamic design can be written as a
function of flow variables and geometric properties:

I'=1(qd) (6)

where [ is the cost function, ¢ is the vector of flow variables, and
d is a vector of design variables that defines the target geometry
of the optimization problem. Because the governing equations for

the flowfield can be incorporated in the optimization problem as
constraints,the design sensitivitycan be derived from the variational
method or the optimal control theory.

For the steady state, the flowfield governing equations R can be
expressed as

R(q.d)=0 (M

When the Lagrange multiplier ¥ is introduced, the augmented cost
function or Lagrangian becomes

I=I1+vy"R ®)

and its first variation can be written as

aIT , OR aIT , OR
Sl ={— +y T —t8qg+{— +y " —{sd )
aq aq

When the multiplier i satisfies the adjoint equation

a7 3R
—+y' —=0 (10)
aq aq

the first term in Eq. (9) vanishes, and the change in the cost function
81 can be obtained from é&d.

Adjoint Formulation for Euler Equations

Equation (10) differs in form according to the governing equa-
tions. In this section, the derivation of continuous adjoint equations
for the Euler equations is briefy described. The description of de-
tailed derivations may be found in the literature > The cost function
of present work is limited to the drag coefficient, and the constraint
is the lift coefficient. They can be expressed with pressures on the
body surface p and the shape of body /, which is a function of
design variablesd.

With the transformation to the computational coordinates &, &,,
and &;, the body surface can be transformed onto a simple region
in the computational domain. We assume that the wing surface is
transformed onto the & = 0 surface. Then, the cost function / can
be written as

1=/ h(d)g(p) d&; (11)
B

S

where Bg is the domain of body surface and g(p) is the lift or
drag coefficients or a blended function of both. When the Lagrange
multiplier v is introduced, the variation of cost function §/ can be
calculated without the variation of pressure 6p. The full details of
the derivations may be found in Refs. 3 and 20.

By use of the continuous adjoint method, the adjoint equations
for the Euler equations derived from Eq. (5) can be written as

r ¥ _
¢l o =0 (12)

where
_oF;
= 70

Equation (12) is similar to the linearized form of the Euler equation
except that the flux Jacobian matrix is transposed. Therefore, it
can be solved by the same numerical procedure as for the Euler
equations, if appropriate boundary conditions are imposed.

The boundary conditions for the adjoint equations at the body
surface are determined as follows®:

1 08, 1 36 1 36 dg

- -2 = 14
> ax, 318x2+w4J8x3 dp (1)

Ci (13)

v +v

where v, V3, and 4 are the second to fourth components of the
Lagrange multiplier . Equation (14) eliminates the contributionof
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pressure variation §p in the variation of cost function §/. Finally,
the variation of cost function becomes

_ g (L3
o [ G s

'S

where D is the computational domain. The variations of metric
8[(1/J)(9&;/dx;)] can be found by the finite difference method
(FDM). Therefore, the gradient of costfunctionG is

G =351/5d (16)

Numerical Method

Both the Euler equations and adjoint equations are discretized
using the cell-centered finite volume method. The numerical fluxes
at the cell faces are calculated by Roe’s?! approximate Riemann
solver together with the second-order upwind TVD scheme (see
Ref. 22).

The semidiscrete form of Eq. (5) can be obtained via finite volume
discretization. When integrated cellwise in the computational space
domain, the governing equations yield

d
E(SQ)[jk +R[jk (Q) =0 17)

where
Rijg =Fpiog = Fru yjut Pyt —Foj 1y

+F ~F (18)

3ijk+ % 3ijk—3%

where S;; is the cell volume and F; are the numericalfluxes at the cell
interfaces. The numerical fluxes of the second-order TVD scheme
are constructed as follows:

Fe = 2[FL + Fr — (IA|AQ — L)tuce] (19)

where subscripts L and R indicate left and right states of each cell
face, the tilde is Roe’s average21 value,and L is the antidiffusiveflux
of the second-orderupwind TVD scheme.2? The van Leer limiter is
used forsatisfyingTVD condition,and Harten’s entropy fix function
is introduced to prevent nonphysical solutions.

The discretizationprocedurefor the adjointequationsare straight-
forward because the two sets of equations are of the same form. Al-
though the adjoint equations are linear, an iterative method is used
for steady-state solution. Because the numerical fluxes for the ad-
jointequationsare very crucial for the accuracy of computed design
sensitivity,a consistent flux functionderived from the discrete Euler
equations is used.?

The steady-state solution is obtained via the DADI algorithm
and the multigrid method with a modified sawtooth cycle.'®!° The
Riemann invariants are used for Euler equations at the far-field
boundary and the flow tangency condition at the body surface. For
the adjointequations, the Lagrangian multipliers are kept zero at the
far-field boundary, and Eq. (14) is used at the body surface.

The solutionprocedureis parallelizedusing the domain decompo-
sition method and message passing interfacelibrary.>* The resulting
parallel code is a single instruction multiple data type.

Design Algorithm

Shape Function and Grid Modification

The wing geometry is described with the initial shape and its per-
turbations. The shape functionsin aerodynamic design are the basis
of perturbation functions. Because the design result will be highly
influencedby the shape functions,one must choose proper functions
according to design goals. In this work, the Hicks-Henne function®
is used as the shape function. It has been used by many researchers
for airfoil and wing design problems.!* When the Hicks-Henne
function is used, the modified section profile can be written as

Y =300 + Y dihi(x) (20)

where y° is the initial geometry, d; are design variables, and &; are
Hicks—Henne functions, which are defined as

h;i(x) = [sin(rx")]? 2D

where 7, locates the maximum of the bump and #, determines the
width of the bump.

For the two-dimensional problem, 10 Hicks-Henne® functions
are used. These design variables are only used to modify the upper
surface of airfoil. The lower surface is kept constant during the de-
sign optimization. For the three-dimensional problem, five sections
of the wing are selected for the basis section. At each basis section,
10 Hicks-Henne functionsare used for modifying the sectionshape.
The first five variables are applied on the upper surface and another
five on the lower surface. Other sections of the wing are linearly
interpolated from the neighboring basis sections.

After the surface is modified, the grid system should be also
modified according to the wing surface. Because the displacement
of surface is usually very small, a simple arc-length-based linear
interpolation is sufficient for the grid modification. The new grid
systemx"*! is calculated as

+1 0 ) 1 0
Xl = x T —x)iy (22)
where
Jj=1 |
X — Xl
j=1 i,j+1.k ijk
Cijk = (23)

Jj max —1
Zj:I |x[.j+1.k_x[jk|

and | - | indicates the L2 norm.

Tightly Coupled Algorithm

The loosely coupled algorithms iteratively solve the flow and
adjoint equations during the optimization. In these method, the op-
timization problem is fully separated from the flow solution pro-
cedure, and several flow calculations are required at every design
iteration including line search.!*!> As mentioned in the Introduc-
tion, this strategy resultsin a substantialincrease of computing time.

In this paper, a tightly coupled algorithm is proposed based on
the design equations. Two necessary conditions of the constraint
optimization problem are feasibility and optimality.2® The flowfield
governing equations can be feasibility conditions of aerodynamic
design optimization. They ensure that the flow variables are satis-
fying physical laws. The optimality condition defines the gradient
of the cost function at the optimum.

One interesting viewpoint of the constraint optimization was in-
troduced by Iollo et al.,'® where the optimization procedure is re-
garded as a pseudo-time marching in the design space. If we use
a loosely coupled algorithm, the design optimization is only per-
formed in the feasible region of design space. However, the feasi-
bility of the design pointduringiterationsis notnecessary, as faras it
can be guaranteedat the optimum. This means that the flow solutions
should not necessarilybe converged during the design optimization.
An alternative cost-effectivealgorithmcan be constructed, by relax-
ing the feasibility condition during the design iterations.

Basically, a new tightly coupled algorithm is based on pseudo-
time marching of the design variables. By the use of the optimality
condition, the gradient of object function should be zero at opti-
mum. Therefore, the following optimality conditioncan be referred
as design equations:

Gd)=0 (24)

In a loosely coupled algorithm, Eq. (24) is solved by a nonlinear
optimization method. During the optimization, the flow and adjoint
equations are repeatedly solved to provide the value of object func-
tion and sensitivity.In present method, a global design cycle is used
to simultaneously solve the flow, adjoint, and design equations.

The design equations can be also solved by a time-marching
method. By the introduction of a pseudotime* in the design space,
the design equations can be written as follows:

od
ot~

+G=0 (25)
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Then, the design variables at new time step n 4+ 1 can be found by
an explicit method:

Ad/At*+G" =0 (26)
or
"' =d" — At*G 7

where Ar* is a time step for the design equations. Note that the
discretized design equations (27) are the same as that of the steepest
descent method >

Now, we have three sets of equations, flow, adjoint, and de-
sign equations. A global design cycle is constructed with the time-
marching procedures of the three sets of equations. If the design
should be feasible during the optimization, the flow equations need
to be fully converged in a design cycle. Theoretically, it is possible
to construct the design cycle just with one time integration of flow,
adjoint, and design equations. However, the three sets of equations
have different numerical characteristics; thus, it is not effective to
construct such a cycle. For the three-dimensional case, the present
design cycle consists of 20 multigrid cycles of flow and adjoint
equations, and one time integration of design equations.

The present algorithm can be referred as a tightly coupled algo-
rithm in the sense that the flow, adjoint, and design equations are
simultaneouslysolvedby a globaldesigncycle. The flow and adjoint
equations are marching to steady state during the design iterations,
while the design variables are also updated in the same iterations.

On the other hand, the time step of the design equations shouldbe
carefully chosen to maintain the stability of the global design cycle.
The stability analysis for the design equations can give the limits of
the time step Ar*; however, it is not an easy task when the structure
of G cannot be defined as an analytic form.

An alternativeis to determine Af* by using the analogy with the
unconstrained optimization procedure.® For an unconstrained op-
timization problem, the new design variables are determined by the
searching direction S and the step size €. With the steepest descent
method, the design variable at the n + 1th step will be updated as

dyr1=d, +e(S/ISD (28)

where the search direction S is defined as S = —G. The step size €
is expected to minimize |G (d 4+ n + 1)|. That is,

G, 1) _ 0G(d, +€S) _
o€ - de -

0 (29)

The Taylor expansion of Eq. (29) yields (see Ref. 15)

_ G'v6s
€ TS (v.0)7V,65 30

where V,G is a Hessian matrix. The production of Hessian matrix
andsearchingdirectionV,GS is calculated from the finite difference
with the previous design point:

ViGS =[G(d +€S) — G(d)]/€ 31
From Egs. (28) and (30), At* can be written as
At =€/IG| (32)

Finally, the present design procedure can be summarized as
follows:

1) Apply multigrid cycles for flow and adjoint equations.

2) Calculate grid sensitivity by finite difference.

3) Evaluate G, gradient of cost function, by the use of Eq. (16).

4) Calculate At* by Eq. (32).

5) Update design variablesusing Eq. (27).

6) Repeat steps 1-5 until G =0.

Numerical Results

The present design method is applied to drag minimization prob-
lems of a two-dimensional airfoil and a three-dimensional wing.

The cost functionfor the aerodynamicdesignis a penalty function
form to keep the lift coefficient constant. The same cost function is
used by Anderson and Venkatakrishnan?’ which can be written as

I = %(CL - CL(J)2 + 1_206% (33)

where C; is the initial lift coefficient.

Two convergence criteria for the design optimization are used:
One is that the L2 norm of the gradient vector is less than 10~*
normalized by its initial value, and the other is the relative change
of cost function is less than 10~%.

Two-Dimensional Airfoil Optimizations

The first test case is a drag minimization of a Royal Aircraft
Establishment(RAE) 2822 airfoil. The flow conditionis Mach num-
ber 0.73 at an angle of attack of 2.79 deg. The test case has been
usedin a previousstudy to validate designalgorithms.!"!2 Under this
flow condition, a strong shock wave appears on the upper surface
of the airfoil.

The optimizationsare performed with a loosely coupledalgorithm
using both the finite difference and adjoint sensitivity methods, as
well as the proposed tightly coupled algorithm. For the loosely cou-
pled algorithm, the Broyden-Fletcher-Goldfarb-Shanno method is
used to determine the searchingdirection, and the step size is deter-
mined by a one-dimensionalline search with a sequential quadratic
interpolation. The computational grid system is O type with 129
grid points. For the loosely coupled algorithm, the solutions at the
previous design point are used as the initial solutions of subsequent
designs.

All three design methods are converged by the second conver-
gencecriterion, thatis, the relative change of the cost functionis less
than 10~*. The loosely coupled algorithm with the finite difference
sensitivity takes 9 designiterations, whereas that with adjoint sensi-
tivity is convergedafter 10 iterations. The tightly coupled algorithm
converges after 30 design iterations.

Figure 1 shows the pressure contours around an airfoil before
and after the design by the tightly coupled algorithm. The strong
shock wave on the airfoil is removed by the design. The design
optimizationresultsare showninFig. 2. Theliftand drag coefficients
of designed airfoils are also given in Table 1. The lift coefficients
of the airfoils are identical, whereas a small difference can be seen
in the drag coefficients. The surface pressure distributions are very
similar except at the leading edge. The result of the tightly coupled
method is slightly different from the other methods. However, all
three designoptimizationmethodsend up with the shock-freeairfoil.
The designedairfoils are almost identical, as can be seen in Fig. 2b.

In the two-dimensional airfoil optimization problem, the design
results of the loosely and tightly coupled methods are essentially
the same. However, the computing costs for the design optimiza-
tions are much different. Table 2 shows the computing cost of the
design optimization algorithms. The costs are given by the relative
cost of a flow analysis when the L2 norm of the density is less than
1076, The computing cost of the design optimization can be dramat-
ically reduced by using the tightly coupled algorithm. The relative

Table1 Aerodynamics coefficients
of design results

Design algorithm Cp Cp

Loosely coupled (FDM) 99.6 58.0
Loosely coupled (adjoint) 99.6 58.0
Tightly coupled (adjoint) 99.6 60.6

Table2 Computing costs of design optimization algorithms

Design algorithm Number of iterations CPU,s Cost

Loosely coupled (FDM) 9 4130 1939
Loosely coupled (adjoint) 10 1897 89.1
Tightly coupled (adjoint) 30 170 8.0
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RAE 2822

Designed airfoil

Fig. 1 Pressure contours around airfoil before and after design.

cost of the present tightly coupled algorithm is just eight times that
of a flow analysis. The efficiencies of tightly and loosely coupled
algorithms are different by a factor of 10, even with the adjoint sen-
sitivity method. Because we solve two sets of field equations, thatis,
flow and adjoint, the ideal cost ratio is expected to 2.0. The present
cost ratio is larger than the ideal value; nonetheless, it is very low
compared with the conventional loosely coupled algorithm.

Three-Dimensional Wing Optimization

The initial geometry for the three-dimensionalwing optimization
is the ONERA M6 wing, and the flow conditionis Mach number0.84
at an angle of attack of 3.06 deg. The object function of the design
optimization is the same as that of the two-dimensional case. The
computational grid system is O-H type with 129 x 33 grid points.
A four-level modified sawtooth cycle is used for the multigrid, and
initial solutions are accelerated by the mesh-sequencing method.
The Cray T3E parallel computer, at the supercomputing center in
the Republic of Korea, is used for numerical calculations, and the
test cases are conducted with 16 processors.

The design was stopped by the second condition of the conver-
gence criteria. The number of design iterations is 20, and total com-
puting time is 995 s for each processor. The number of multigrid
cycles for the flow equations is 236, during the design iterations,
and that for the adjoint equationsis 379.

Figure 3 shows comparison of pressure contours on the wing
surface between the initial and the designed wings. The strong A
shock on the upper surface of the wing is smeared by the design.
Figure 4 shows pressure plots on the selected wing spans. The shock
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b) RAE 2822 and designed airfoils

Fig.2 Results of design optimization of various methods.

ONERA M6

Designed wing

Fig.3 Pressure contours on the wing surface before and after design.
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Fig.4 Comparisons of pressure distributions on selected wing sections.

ONERA M6
Designed Wing

Fig.5 Geometries of the ONERA M6 and designed wing.

waves are smeared but not fully removed. One possible reason is
the shape function. In the present design, only five selected wing
sections are modified by the design variables,and other parts of the
wing surface are interpolated from the selected sections. Thus, the
exibility of shape function is somewhat limited, and it can resultin
the remaining shock waves.

Figure 5 shows the shape change of the wing by the design
optimization. The lower surface of the designed wing is simi-
lar to that of ONERA M6. The upper surface of the designed
wing is modified to reduce the shock strength. The wing becomes
slender at the wing root, and it becomes thicker along the wing
span.

Figure 6 shows the history of the L2 norm of the gradient and
cost function, and Fig. 7 shows the histories of the lift and drag
coefficients during design iterations. The wave drag is reduced by
20%, and the lift is maintained at 98% of initial value. Both the
L2 norm and the cost function decrease monotonically during the
design cycles, but flatten out later.

(E3) 100
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object function

L2 norm of Gradients
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gradients

| N NN RS NEWEE SR EREEs RSN

10
Design Iteration

Fig. 6 Histories of the cost function and L2 norm of gradient during
design iterations.

The total cost of the design optimization is again compared
with that of flow analysis alone. Because the computing time
of the flow analysis significantly varies according to the conver-
gence criterion, several criteria are chosen for comparison. The
cost ratio of design and flow analysis is about 7.65 when the
convergence criterion of flow analysis is 107% and 12.6 for 1073,
Even with 10~ of the convergence criterion, the relative cost is
22.4.
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Fig.7 Histories of the lift and drag coefficient.

Conclusions

An ADO method based on a tightly coupled algorithm is pre-
sented. The present method uses the adjoint method for sensitivity
analysis, which is adequate for large-scale design problems. The
design equations are derived from the optimality condition, and
they are solved by a time-marching method, together with the flow
and adjoint equations. The step size for the design equations is
determined by a simple relation without an expensive line search
algorithm.

Two and three-dimensionalinviscid drag minimization problems
are solved by using the present design algorithm. The present de-
sign algorithm successfully removes or smears the shock waves in
the flowfield, and it reduces a significant amount of wave drag. In
terms of relative cost to the flow analysis, the present design al-
gorithm takes 8.0 and 7.65 for two- and three-dimensional design
optimization problem, respectively. The substantialreductionin the
computing cost can be observed, compared with the conventional
loosely coupled algorithm. For two-dimensional test case, the cost
for the proposed tightly coupled algorithm is less than 10% of the
loosely coupled one.
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